دانلود پایان نامه

1991).
انتخاب آزاد (نامقید) روش MI ، سؤال را انتخاب می‌کند که آگاهی فیشر را در بیشینه کند. و موقت برای آزمودنی بعد از n سؤال برآورد می‌شوند. زمانی که سؤالاتی که در CAT قرار می‌گیرد با استفاده از روش MI انتخاب شوند، دقت به ازای هر سؤالی که اجرا می‌شود، افزایش می‌یابد (هملتون و همکاران، 1991). انتخاب سؤال به روش بیشینه‌ی آگاهی از لحاظ محاسباتی بسیار سرراست است، زیرا عملیات محاسبه‌ی توابع آگاهی می‌تواند قبل از این‌که هر یک از آزمودن‌ها آزمون دهند، محاسبه شود. نتایج آگاهی‌های محاسبه شده در خانه‌های جدول بر اساس میزان آگاهی‌شان مرتب می‌شوند (پارشال، اسپری، کالن و دیوی، 2002). در عمل، اغلب انتخاب سؤال به روش MI بر روی جدول آگاهی که قبلاً محاسبه شده‌ی استوار است، که در آن جدول سؤالات بر اساس آگاهی که در هر تعداد از مقادیر فراهم می‌کند، منظم می‌شوند. انتخاب سؤال برای همه‌ی هایی که در حدود فواصل مقدار جدول‌بندی شده قرار دارند، یکسان است. به جای محاسبه‌ی میزان آگاهی فیشر برای هر یک از سؤالات خزانه‌ی سؤال در مقدار برآورد جدید ، در هر زمانی که سؤال بعدی باید انتخاب شود، لازم است که تنها یک مرتبه برای هر سؤال در هر نقطه جدول‌بندی شده محاسبه شود. روش انتخاب سؤالی که بر جدول آگاهی مبتنی است تقریباً اطلاعات کمتری ایحاد می‌کند، امّا از لحاظ محاسباتی نسبت به روش MI دشواری کمتری دارد. این شیوه‌های انتخاب سؤال آماری، بر ملاحظات عملی از قبیل نرخ مواجهه سؤال اثر می‌گذارند (گو و ریکیسی، 2007). البته، متاسفانه، خطای برآورد اغلب به انتخاب سؤالات از ستونی منجر می‌شوند که مقدار توانایی واقعی را پوشش نمی‌دهد. این قضیه، مخصوصاً زمانی واقعیت پیدا می‌کند که تعداد کمی سؤال اجرا می‌شود. و زمانی‌که سؤالات ضرایب تشخیص بالایی دارند که باعث می‌شود به بالای جدول آگاهی نزدیک شوند، وخیم‌تر می‌شود. چون این سؤالات بیشتر مورد توجه قرار می‌گیرند. اغلب این سؤالات دامنه‌ی محدودی از توانایی را تشخیص می‌دهند و بقیه‌ی دامنه‌ی توانایی را ضعیف تشخیص می‌دهند. بنابراین، سؤالاتی که به خوبی برآورد موقت توانایی را اندازه‌گیری می‌کنند، ممکن است به‌طور ضعیفی مقدار واقعی توانایی را اندازه‌گیری کنند (پارشال، اسپری، کالن و دیوی، 2002). بنابراین توصیه می‌شود، زمانی که این شیوه‌ی انتخاب سؤال در الگوریتم CAT به کار می‌رود، از روش‌های مناسب کنترل مواجهه استفاده شود (گو و ریکیسی، 2007).
2). شیوه‌ی انتخاب سؤال به روش بیشینه‌ی دقت پسین
در شیوه‌ی انتخاب سؤال بیشینه‌ی پسین (MPP)، سؤالی انتخاب می‌شود که بیشترین کاهش را در واریانس توزیع پسین توانایی ایجاد کند. این روش به منظور تشخیص برآوردهای موقتی توانایی که دارای خطا هستند، ایجاد شده است. بنابراین، سؤالات براساس توزیع کامل پسین توانایی به جای یک نقطه‌ی برآورد، انتخاب می‌شوند. ممکن است که سؤالی که انتخاب می‌شود در آن سطح توانایی یا سطوح دیگر توانایی، بیشترین آگاهی را نداشته باشد. درعوض، سؤال انتخاب شده، سؤال متعادلی است که در طول سطح چگالی توزیع پسین، اندازه‌گیری مناسبی انجام می‌دهد. این رویکرد ماهیت محافظه‌کارانه‌ای دارد و اغلب نتایج خوبی ایجاد می‌کند. با این وجود، رویکرد MPP نمی‌تواند بر اساس جدول آگاهی عمل کند و بنابراین، از لجاظ محاسباتی سخت‌تر از رویکرد MI می‌باشد. در این شیوه، به طور مداوم سؤالات ارائه نشده‌ی کل بانک سؤال جستجو می‌شود تا سؤالی که حداکثر کاهش را در واریانس پسین ایجاد می‌کند، پیدا شود. این فرایند برای خزانه‌های سؤالی که نسبتاً بزرگ هستند، بی‌نهایت زمان‌بر می‌باشد (پارشال، اسپری، کالن و دیوی، 2002).
3). شیوه‌ی انتخاب سؤال به روش آگاهی وزن‌دار
روش آگاهی وزن‌دار، شیوه‌ای از انتخاب سؤال است که در آن وزن‌هایی از توزیع پسین توانایی جدید آزمودنی به ستون‌هایی از جدول آگاهی وارد می‌شود. در طول انتخاب سؤال، مقادیر آگاهی فراهم شده براساس هر سؤال در هر سطح توانایی در این وزن‌ها ضرب و سپس جمع می‌شود. سؤالی با بیشترین آگاهی وزن‌دار برای اجرا انتخاب می‌شود. شباهت روش WI به روش MPP در این است که در هر دو روش فرض می‌شود که برآوردهای موقتی همراه با خطا هستند. با این وجود، با اینکه از لحاظ محاسباتی به سادگی روش MI نمی‌باشد، ولی ساده‌تر از روش MPP می‌باشد. این شباهت به دلیل است که تقریب اوون (1969 و 1975) به توزیع پسین توانایی، می‌تواند برای محاسبه‌ی وزن‌ها به کار رود (پارشال، اسپری، کالن و دیوی، 2002).
قواعد اتمام آزمون
روش‌های اجرای CAT در دو طبقه‌ی اساسی قرار می‌گیرند. این طبقه‌بندی بر اساس قواعد اتمام آزمون تعریف می‌شود. آنها یا دارای طول ثابت هستند و یا دارای طول متغیر. در آزمون‌های CAT با طول ثابت، تعداد یکسانی سؤال برای هر آزمودنی اجرا می‌شود. بنابراین، آزمودنی‌های متفاوت ممکن است با سطوح متفاوتی از دقت سنجش شوند، دقیقاً همانند آنچه در آزمون‌های غیر انطباقی مرسوم می‌باشد. اگر آزمونی که برای آزمودنی‌ها انتخاب می‌شود، مناسب باشد و به آسانی مورد هدف سنجش قرار گیرد، به دلیل این‌که، پاسخی که این نوع آزمودنی به آزمون خواهند داد، قابل پیش بینی خواهد بود و یا به دلیل اینکه توانایی آنها در نقطه‌ای قرار می‌گیرد که خزانه‌ی سؤال غنی است، بسیار دقیق‌تر از آزمودنی‌هایی که به خوبی مورد هدف سنجش قرار نمی‌گیرند، مورد اندازه‌گیری قرار می‌گیرند. در مقابل، در آزمون‌های CAT که طول متغیر دارند، هر آزمودنی به سطح ثابتی از دقت می‌رسد، و اگر نیاز باشد، تعداد متفاوتی سؤال برای آزمودنی‌های مختلف اجرا می‌شود. در این نوع CAT، آزمودنی‌هایی که به خوبی مورد هدف سنجش قرار می‌گیرند، آزمون کوتاهتری نسبت به آزمودنی‌هایی که به طور ضعیفی مورد هدف سنجش قرار می‌گیرند، دریافت می‌کنند (پارشال، اسپری، کالن و دیوی، 2002).
مجموعه قواعد توقف آزمون
یکی از عنصرهای تعیین کننده و مهم در CAT تصمیمی است که برای توقف آزمون گرفته می‌شود. اگر آزمون خیلی کوتاه باشد، این امکان وجود دارد که برآورد توانایی همراه با خطا باشد. همچنین، اگر آزمون طولانی باشد، باعث به هدر رفتن زمان و منابع می‌شود و سؤالات غیر ضروری به آزمودنی‌ها ارائه می‌شود. آزمودنی خسته می‌شود و سطح عملکردش افت می‌کند، در نتیجه، اعتبار نتایج از بین می‌رود (لیناکر، 1999).
آزمون‌های CAT زمانی متوقف می‌شود که؛
خزانه‌ی سؤال خالی شود: این مورد زمانی اتفاق می‌افتد که خزانه‌ی سؤال کوچک باشد، و همه‌ی سؤالات برای آزمودنی اجرا شود.
به حداکثر طول آزمون برسیم: طول آزمون از قبل تعیین شده باشد.
مقیاس توانایی با دقت کافی برآورد شود: هر پاسخ، اطلاعات آماری در مورد میزان توانایی فراهم می‌کند. افزایش آگاهی با کاهش خطای استاندارد همراه است، که به دنبال آن دقت آزمون افزایش می‌یابد و زمانی که اندازه‌گیری به اندازه‌ی کافی دقیق باشد، آزمون متوقف می‌شود.

مقدار توانایی به اندازه کافی دورتر از ملاک قبول-رد باشد: در سنجش‌هایی از CAT که آزمودنی در برابر سطح قبول یا رد ارزیابی می‌شود، آزمون زمانی متوقف می‌شود که تصمیم قبول یا رد از لحاظ آماری معین باشد و زمانی اتفاق می‌افتد که برآورد توانایی 2 واحد S.E دورتر از سطح ملاک باشد، و یا زمانی که سؤالات کافی وجود نداشته باشد، در نتیجه، آزمون برای آزمودنی متوقف می‌شود تا تصمیم قبول-رد تغییر کند.
آزمودنی رفتاری خارج از آزمون نشان دهد: برنامه‌های CAT این توانایی را دارند نظم الگوی پاسخ را کشف کنند، مانند انتخاب‌های نامربوط به گزینه‌های پاسخ یکسان یا الگوهای پاسخ نامربوط. همچنین، نحوه‌ی پاسخ‌دهی به سرعت و یا به کندی را نیز کشف می‌کنند. در این مواقع سیستم CAT آزمون را متوقف می‌کند (لیناکر، 2000).
برآورد توانایی یا شیوه‌ی نمره‌دهی
تقریباً در همه‌ی سنجش‌های انطباقی کامپیوتری، از طریق برآورد توانایی، به فرد نمره داده می‌شود. چون این مولفه‌ی CAT به مقدار زیادی بر انتخاب سؤال، طول آزمون، دقت اندازه‌گیری و نتیجه‌ی آزمون اثر می‌گذارد، یکی از مولفه‌های مهم CAT درنظر گرفته می‌شود. در اغلب موقعیت‌های سنجش انطباقی کامپیوتری، برآوردهای پارامتر سؤال بر اساس IRT می‌باشد، و فرض بر این است که مقادیر این برآوردها بدون خطا و معلوم هستند و در خزانه‌ی سؤال ذخیره شدند. بنابراین تنها پارامتری که در طول اجرای سنجش انطباقی باید برآورد شود، توانایی مکنون آزمودنی یعنی، می‌باشد. برآوردهای توانایی به دنبال هر پاسخ سؤال جدید برآورد می‌شود تا بهترین برآورد برای توانایی واقعی آزمودنی بدست آید. برآوردهای متوالی توانایی همچنان که آزمون اجرا می‌شود به‌دست می‌آید و برآورد موقت نامیده می‌شود. این قضیه این واقعیت را منعکس می‌کند که هر برآوردی تنها روی آنچه در مورد آزمودنی در آن نقطه از فرایند سنجش معلوم است، تکیه دارد. چندین روش برای محاسبه‌ی برآوردهای موقت در ادبیات مربوط به CAT وجود دارد که هریک دارای مزیت‌ها و مشکلاتی هستند. سه روش مشهور توانایی عبارتند از؛ برآورد بیشینه‌ی درست نمایی (MLE)، پسین مورد انتظار (EAP)، بیشینه‌ی پسین (MAP). این دو روش آخر، مربوط به رویکرد بیزین هستند و به ترتیب می‌توانند به عنوان رویکردهای میانگین بیز و مد بیز نامیده شوند. این دو روش از نظر محاسباتی به یکدیگر شباهت بسیاری دارند و دارای زیربنای یکسانی هستند (پارشال، اسپری، کالن و دیوی، 2002). این سه روش به دو رویکرد کلی روش‌های بیزین (لرد، 1980) و روش‌های بیشینه درست نمایی تقسیم می‌شوند. روش بیشینه‌ی پسین (MAP)، را روش بیزین اوون نیز می‌نامند، و در اغلب برنامه‌های CAT نیز مورد استفاده قرار می‌گیرد (اوون، 1969؛ 1975)، از این‌رو، از روش‌های بیزین تنها روش بیزین اوون یا بیشینه‌ی پسین در این فصل شرح داده‌ می‌شود.

 

اینجا فقط تکه های از پایان نامه به صورت رندم (تصادفی) درج می شود که هنگام انتقال از فایل ورد ممکن است باعث به هم ریختگی شود و یا عکس ها ، نمودار ها و جداول درج نشوند.

برای دانلود متن کامل پایان نامه ، مقاله ، تحقیق ، پروژه ، پروپوزال ،سمینار مقطع کارشناسی ، ارشد و دکتری در موضوعات مختلف با فرمت ورد می توانید به سایت  77u.ir  مراجعه نمایید

رشته روانشناسی و علوم تربیتی همه موضوعات و گرایش ها :روانشناسی بالینی ، تربیتی ، صنعتی سازمانی ،آموزش‌ و پرورش‌، کودکاناستثنائی‌،روانسنجی، تکنولوژی آموزشی ، مدیریت آموزشی ، برنامه ریزی درسی ، زیست روانشناسی ، روانشناسی رشد

مطلب مرتبط :   فایل پایان نامه سازگاری اجتماعی-خرید پایان نامه کامل-پایان نامه آماده

در این سایت مجموعه بسیار بزرگی از مقالات و پایان نامه ها با منابع و ماخذ کامل درج شده که قسمتی از آنها به صورت رایگان و بقیه برای فروش و دانلود درج شده اند

شیوه‌ی برآورد توانایی اوون (برآوردهای بیزین)
روش برآورد توانایی متوالی بیزین اوون (1969)، به عنوان بخشی از برنامه‌ریزی سنجش انطباقی توسط او پیشنهاد شده است. در این رویکرد سؤالاتی انتخاب می‌شود که مقدار مورد انتظار واریانس پسین بیزین را به حداقل برساند. در هر صورت این شیوه‌ی برآورد توانایی با استفاده از ملاک‌های دیگر انتخاب سؤال، در برنامه‌ریزیCAT مفید درنظر‌گرفته ‌می‌شود.
درواقع، روش بیزین اوون با یک توزیع پیشین توانایی شروع می‌کند. در این روش فرض بر این است که آزمودنی عضوی از جامعه‌ای با توزیع نرمال توانایی با میانگین و واریانس شناخته ‌شده می‌باشد. بعد از هر سؤال، میانگین و واریانس با استفاده از یک روش آماری مناسب اصلاح می‌شود. در این روش آماری، اطلاعات توزیع پیشین با نمره‌ی مشاهده شده (صحیح یا غلط) در سؤالی که اخیراً پاسخ داده‌شده و پارامترهای مدل IRT تست ترکیب می‌شود و توانایی جدید را برآورد می‌کند. مقادیر تجدید‌نظر شده‌ی پارامترهای توزیع توانایی، توزیع پسین را تعیین می‌کنند، این مقادیر به عنوان توزیع پیشین برای سؤال بعدی به‌کار‌می‌رود. این فرآیند تا آنجا ادامه می‌یابد که آزمون به پایان برسد. در آن نقطه (پایان آزمون)، میانگین پسین به عنوان برآورد توانایی آزمودنی به کار می‌رود. معادله‌ی (2-3)، برآورد اوون برای اصلاح میانگین پیشین را نشان می‌دهد:
(2-3)
اوون (1975)، نشان داد که بعد از هر سؤالی که اجرا می‌شود، برآورد و برابرند با:
(2-4)
(2-5)

: پاسخ سؤال می‌باشد، زمانی که سؤال صحیح پاسخ داده‌می‌شود و زمانی که پاسخ سؤال غلط می‌باشد
: تابع چگالی احتمال نرمال استاندارد
: تابع چگالی تجمعی نرمال استاندارد
و
(2-6)
که در معادله (2-6)، و بصورت زیر تعریف میشوند:
نمره‌دهی آزمون سنجش انطباقی به روش اوون، تنها یک پاسخ را در یک زمان درنظر‌می‌گیرد. همه‌ی اطلاعات قبلی در پارامترهای توزیع پیشین وارد می‌شود و بعد از هر سؤال تغییر می‌کنند. به دلیل اطلاعات پیشین اضافه‌شده، در شیوه‌های بیزین این مزیت وجود دارد که نسبت به MLE خطاهای استاندارد کوچکتری در تعداد یکسانی از سؤالات اجرا‌شده دارند. با این وجود، استفاده از یک پیشین نادرست، باعث می‌شود که برای بهبود برآورد، به تعداد سؤالات بیشتری نیاز داشته‌باشیم، و بازگشت به سمت میانگین در برآورد توانایی رخ‌دهد. با این وجود، کاربرد روش بیزین اوون برای برآورد توانایی پایانی، به دلیل وابستگی به ترتیب ارائه‌ی سؤالات توصیه نمی‌شود (پارشال، اسپری، کالن و دیوی، 2002).

شیوه‌ی بیشینه‌ی درست نمایی
برآورد بیشینه‌ی درست نمایی توانایی از طریق جستجوی مقدار بیشینه‌ی تابع درست نمایی تعیین می‌شود. از این شیوه‌ی برآورد، زمانی که پارامترهای سؤال معلوم باشند، به کار می‌رود. در این روش فرض بر این است که یک آزمودنی با الگوی پاسخ که به طور تصادفی انتخاب می‌شود، به مجموعه‌ای n سؤالی پاسخ می‌دهد. اگر پاسخ صحیح به سؤال باشد و پاسخ غلط به سؤال باشد. بر اساس مفروضه‌ی استقلال موضعی، احتمال مشترک مشاهده‌ی الگوی پاسخ برای این آزمودنی برابر است با؛ حاصلضرب احتمال‌های مشاهده شده‌ی پاسخ‌های او. معادله‌ی (2-7) این حاصل را نشان می‌دهد:
(2-7)
با در نظر گرفتن و ، تابع درست نمایی می‌تواند به صورت معادله‌ی (2-8) نوشته شود:
(2-8)
حال اگر الگوی پاسخ مشخص باشد، یعنی باشد، دیگر کاربرد احتمال مناسب نخواهد بود، لذا در این شرایط معادله‌ی احتمال مشترک را تابع درست نمایی می‌نامیم و آن را با معادله‌ی (2-9) نشان می‌دهیم:
(2-9)
از آنجا که تابع درست نمایی حاصل‌ضرب کمیت‌هایی است که بین صفر و یک قرار دارد، بنابرین، حاصلضرب مقدار فوق بسیار کوچک می‌شود، مقیاس سازی بهتری از آن این است که از تبدیل لگاریتمی استفاده شود. معادله‌ی (2-10) این تبدیل لگاریتمی را نشان می‌دهد:
(2-10)
حال مقدار که تابع درست نمایی یا لگاریتم تابع درست نمایی یک آزمودنی را بیشینه سازد، به عنوان برآورد بیشینه‌ی درست نمایی برای آن آزمودنی تعیین می‌شود (همبلتون، سوامیناتان و راجرز، 1991). برآورد بیشینه‌ی درست نمایی برای آزمون‌های کوتاه با ثبات نیست و تا زمانی‌که آزمودنی در الگوی پاسخ خود پاسخ صحیح یا غلط نداشته باشد مقدار نامحدود بدست می‌آید. MLE مقدار اریب نسبتاً کمی دارد. ولی یکی از مشکلات آن این است که گاهی اوقات چندین نقطه‌ی بیشینه خواهد داشت. این روش به محاسبات طولانی‌تری نسبت به روش‌های بیزین نیاز دارد (پارشال، اسپری، کالن و دیوی، 2002).
مواجهه‌ی سؤال
در کل، اغلب روش‌های انتخاب سؤال، برخی از سؤالات را بیشتر از سؤالات دیگر، به دلیل، صفات برتر اندازه‌گیری یا ویژگی‌های مطلوب سؤال ترجیح می‌دهند. در نتیجه، برخی از سؤالات بیشتر از حد مجاز برای آزمودنی‌ها اجرا می‌شوند. این امر ممکن است


دیدگاهتان را بنویسید